3.299 \(\int \sqrt{a+b \cos (c+d x)} (A+B \cos (c+d x)) \, dx\)

Optimal. Leaf size=171 \[ -\frac{2 B \left (a^2-b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 b d \sqrt{a+b \cos (c+d x)}}+\frac{2 (a B+3 A b) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 b d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{2 B \sin (c+d x) \sqrt{a+b \cos (c+d x)}}{3 d} \]

[Out]

(2*(3*A*b + a*B)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(3*b*d*Sqrt[(a + b*Cos[c + d*
x])/(a + b)]) - (2*(a^2 - b^2)*B*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(3*
b*d*Sqrt[a + b*Cos[c + d*x]]) + (2*B*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.219655, antiderivative size = 171, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {2753, 2752, 2663, 2661, 2655, 2653} \[ -\frac{2 B \left (a^2-b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 b d \sqrt{a+b \cos (c+d x)}}+\frac{2 (a B+3 A b) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 b d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{2 B \sin (c+d x) \sqrt{a+b \cos (c+d x)}}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Cos[c + d*x]]*(A + B*Cos[c + d*x]),x]

[Out]

(2*(3*A*b + a*B)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(3*b*d*Sqrt[(a + b*Cos[c + d*
x])/(a + b)]) - (2*(a^2 - b^2)*B*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(3*
b*d*Sqrt[a + b*Cos[c + d*x]]) + (2*B*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(3*d)

Rule 2753

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(d
*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(f*(m + 1)), x] + Dist[1/(m + 1), Int[(a + b*Sin[e + f*x])^(m - 1)*Simp[
b*d*m + a*c*(m + 1) + (a*d*m + b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*
c - a*d, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && IntegerQ[2*m]

Rule 2752

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int \sqrt{a+b \cos (c+d x)} (A+B \cos (c+d x)) \, dx &=\frac{2 B \sqrt{a+b \cos (c+d x)} \sin (c+d x)}{3 d}+\frac{2}{3} \int \frac{\frac{1}{2} (3 a A+b B)+\frac{1}{2} (3 A b+a B) \cos (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx\\ &=\frac{2 B \sqrt{a+b \cos (c+d x)} \sin (c+d x)}{3 d}-\frac{\left (\left (a^2-b^2\right ) B\right ) \int \frac{1}{\sqrt{a+b \cos (c+d x)}} \, dx}{3 b}+\frac{(3 A b+a B) \int \sqrt{a+b \cos (c+d x)} \, dx}{3 b}\\ &=\frac{2 B \sqrt{a+b \cos (c+d x)} \sin (c+d x)}{3 d}+\frac{\left ((3 A b+a B) \sqrt{a+b \cos (c+d x)}\right ) \int \sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}} \, dx}{3 b \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}-\frac{\left (\left (a^2-b^2\right ) B \sqrt{\frac{a+b \cos (c+d x)}{a+b}}\right ) \int \frac{1}{\sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}}} \, dx}{3 b \sqrt{a+b \cos (c+d x)}}\\ &=\frac{2 (3 A b+a B) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 b d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}-\frac{2 \left (a^2-b^2\right ) B \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 b d \sqrt{a+b \cos (c+d x)}}+\frac{2 B \sqrt{a+b \cos (c+d x)} \sin (c+d x)}{3 d}\\ \end{align*}

Mathematica [A]  time = 0.575338, size = 146, normalized size = 0.85 \[ \frac{-2 B \left (a^2-b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )+2 (a+b) (a B+3 A b) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )+2 b B \sin (c+d x) (a+b \cos (c+d x))}{3 b d \sqrt{a+b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*Cos[c + d*x]]*(A + B*Cos[c + d*x]),x]

[Out]

(2*(a + b)*(3*A*b + a*B)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticE[(c + d*x)/2, (2*b)/(a + b)] - 2*(a^2 - b
^2)*B*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)] + 2*b*B*(a + b*Cos[c + d*x])*Si
n[c + d*x])/(3*b*d*Sqrt[a + b*Cos[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 4.319, size = 600, normalized size = 3.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)),x)

[Out]

-2/3*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(4*B*cos(1/2*d*x+1/2*c)^5*b^2+3*A*(sin(1/2*d*
x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2)
)*a*b-3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*
c),(-2*b/(a-b))^(1/2))*b^2+2*B*cos(1/2*d*x+1/2*c)^3*a*b-6*B*cos(1/2*d*x+1/2*c)^3*b^2-B*(sin(1/2*d*x+1/2*c)^2)^
(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2+B*b^2*
(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(
a-b))^(1/2))+B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x
+1/2*c),(-2*b/(a-b))^(1/2))*a^2-B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*El
lipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b-2*B*cos(1/2*d*x+1/2*c)*a*b+2*B*cos(1/2*d*x+1/2*c)*b^2)/b/(-
2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^
(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt{b \cos \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (B \cos \left (d x + c\right ) + A\right )} \sqrt{b \cos \left (d x + c\right ) + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)),x, algorithm="fricas")

[Out]

integral((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (A + B \cos{\left (c + d x \right )}\right ) \sqrt{a + b \cos{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**(1/2)*(A+B*cos(d*x+c)),x)

[Out]

Integral((A + B*cos(c + d*x))*sqrt(a + b*cos(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt{b \cos \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a), x)